Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol.
نویسندگان
چکیده
DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styrene oxide, with the enantiomeric ratio value (E value) for the production of (R)-1-phenylethane-1,2-diol increased from 17 for the wild-type enzyme to 91, as well as twofold-improved activity for the production of (R)-1-phenylethane-1,2-diol (1.96 +/- 0.09 versus 1.04 +/- 0.07 micromol/min/mg for wild-type EchA). Computer modeling indicated that this mutation significantly alters (R)-styrene oxide binding in the active site. Another three variants from EchA active-site engineering, F108L/C248I, I219L/C248I, and F108L/I219L/C248I, also exhibited improved enantioselectivity toward racemic styrene oxide in favor of production of the corresponding diol in the (R) configuration (twofold enhancement in their E values). Variant F108L/I219L/C248I also demonstrated 10-fold- and 2-fold-increased activity on 5 mM epoxypropane (24 +/- 2 versus 2.4 +/- 0.3 micromol/min/mg for the wild-type enzyme) and 5 mM 1,2-epoxyhexane (5.2 +/- 0.5 versus 2.6 +/- 0.0 micromol/min/mg for the wild-type enzyme). Both variants L190F (isolated from a DNA shuffling library) and L190Y (created from subsequent saturation mutagenesis) showed significantly enhanced activity for racemic styrene oxide hydrolysis, with 4.8-fold (8.6 +/- 0.3 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) and 2.7-fold (4.8 +/- 0.8 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) improvements, respectively. L190Y also hydrolyzed 1,2-epoxyhexane 2.5 times faster than the wild-type enzyme.
منابع مشابه
Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1.
The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identica...
متن کاملKinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1.
Epoxide hydrolase from Agrobacterium radiobacter AD1 catalyzes the enantioselective hydrolysis of styrene oxide with an E value of 16. The (R)-enantiomer of styrene oxide is first converted with a k(cat) of 3.8 s(-1), and the conversion of the (S)-enantiomer is inhibited. The latter is subsequently hydrolyzed with a k(cat) of 10.5 s(-1). The pre-steady-state kinetic parameters were determined f...
متن کاملQuantum Chemical Studies of Epoxide- Transforming Enzymes
Density functional theory is employed to study the reaction mechanisms of different epoxide-transforming enzymes. Calculations are based on quantum chemical active site models, which are build from X-ray crystal structures. The models are used to study conversion of various epoxides into their corresponding diols or substituted alcohols. Epoxide-transforming enzymes from three different familie...
متن کاملHighly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides.
[figure: see text] The halohydrin dehalogenase from Agrobacterium radiobacter AD1 catalyzed the highly enantioselective and beta-regioselective azidolysis of (substituted) styrene oxides. By means of kinetic resolutions the remaining epoxide and the formed azido alcohol could be obtained in very high ee. In a large scale conversion, the decrease in yield and selectivity due to the uncatalyzed c...
متن کاملProteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene.
Metabolically engineered Escherichia coli has previously been used to degrade cis-1,2-dichloroethylene (cis-DCE). The strains express the six genes of an evolved toluene ortho-monooxygenase from Burkholderia cepacia G4 (TOM-Green, which formed a reactive epoxide) with either (1) gamma-glutamylcysteine synthetase (GSHI, which forms glutathione) and the glutathione S-transferase IsoILR1 from Rhod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 7 شماره
صفحات -
تاریخ انتشار 2005